
 

Homework Problems V 

PHYS 425: Electromagnetism I 
.  

1. Griffiths Problem 5.30 
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Because the derivatives only operate on r in r , 
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where  means the gradient with respect to r’ . Now use the integration by parts formula 
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By the divergence theorem, the first integral becomes a surface integral. Letting the surface go to infinity 

yields zero because J vanishes there. For steady currents 0  J  and the second term vanishes. Thus

0  A . 

Because the derivatives only operate on r in r , 
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2. Griffiths Problem 6.7 

 

As there are no free currents, H vanishes. So inside the cylinder 

0B M  

Outside the cylinder 
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Note the bound surface current ˆˆ
b n M  K M is just that required to cancel the inside field  

via Ampere’s law. 
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This same surface current is important for Problem 6.16 
 

3. Griffiths Problem 6.13 

 

By superposition, the field is the same as that of a uniform magnetized material, plus a sphere 

magnetized in the opposite direction. By example 6.1, inside a uniformly magnetized sphere 
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When subtracted from the initial field 
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Because M vanishes inside the sphere 
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For the needle, because there is no free current and H is aligned along the needle, H is the same inside 

and outside. So 
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For the wafer, B is normal to the wafer surface and hence the same inside and outside. So 
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4. Griffiths Problem 6.16 

 

By the right hand rule and Ampere’s Law 
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where̂ points out above the central conductor and in below the central conductor in Fig. 6.24. For a 

linear material with susceptability m  
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The magnetization is  / 2m mI s  M H = . The bound current is 

1
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Ampere’s Law gives 
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 as above.  

 

5. Griffiths Problem 6.21 Hint: do a line integral using Equation 6.3 

a) In a region without magnetic field at large radius, rotate the dipole into final orientation. 

Because the field vanishes there is no force and no work to orient the dipole. Next integrate 

Eq. 6.3. 
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b) Putting a dipole 1m into the field of 2m  (the answer is symmetric in the choice!) 
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c) Using the geometry given in the problem 
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d) Minimum energy in first case when the moments line up. 

 
 

6. Griffiths Problem 6.24 Hint: take a gradient of the answer to (b) in the previous problem, or use 

Equation 6.3 directly to get the magnetic forces. 

a) For the dipoles anti-aligned and oriented in the vertical direction the mechanical potential is 
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where r is the height difference between the dipoles. The dipole force is up  



 

 

and balances the weight dm g . The height of the levitated dipole is 
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b) Using the distances given, the distances between the dipoles are x , y , and x y . The potential 

of all three dipole interactions plus the gravitational interaction is 

 
 

2 2 2

0 0 0

3 3 3

2 2 2

4 4 4
d d

m m m
U m gx m g x y

x y x y

  

  
     

  

 The equilibria solve 
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These are non-linear equations that must be solved numerically. Here is one method. Take twice 

the second equation and subtract it from the first. The result is 
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Letting  
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Iterate numerically starting with 2z  in the right hand side to compute the left hand side. I get

0 2z  , 1 1.912927z  , 2 1.914684z  , 3 1.914648z  , and 4 1.914649z  after which the value 

doesn’t change to the digits indicated. Thus  
1/4

/ 1.914649 0.8501x y


  . 
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